- 1. Let (X, d) be a metric space. Let $C_b(X)$ denote the normed linear space consisting of all (real or complex valued) bounded functions on X, with usual operations and supremum norm.
 - (a) Show that $C_b(X)$ is a Banach space.
 - (b) Fix a point $x_0 \in X$. For any $x \in X$, let $\rho_x : X \to \mathbb{R}$ be defined by $\rho_x(y) = d(x, y) d(x_0, y), y \in X$. Show that $x \to \rho_x$ is an isometric embedding of X in $C_b(X)$.
 - (c) show that every metric space occurs as a dense subspace of a complete metric space.

Solution:

(a) We show that $C_b(X)$ is a Banach space. Let k denote the field \mathbb{R} or \mathbb{C} . Let (f_n) be a Cauchy sequence in $C_b(X)$. Then note for each $x \in X$, $|f_n(x) - f_m(x)| \le ||f_n - f_m|| \to 0$ as $m, n \to \infty$ so that $(f_n(x))$ is a Cauchy sequence in k for each $x \in X$ and hence convergent in k. Let $f : X \to k$ be defined by $f(x) = \lim f_n(x), x \in X$. We need to show that f is in $C_b(X)$. Given $\epsilon > 0$, there exists a positive integer N such that $||f_n - f_m|| < \epsilon$ for all $m, n \ge N$. Thus, $|f_n(x) - f_m(x)| < \epsilon$ for all x in X and for all $m, n \ge N$. Let $m \to \infty$. Then,

$$|f_n(x) - f(x)| \le \epsilon, \forall x \in X, \forall n \ge N.$$
(1)

Thus for all $x \in X$,

$$|f(x)| = |f(x) - f_N(x) + f_N(x)| \leq |f(x) - f_N(x)| + |f_N(x)| \leq \epsilon + ||f_N||$$

showing that f is bounded on X. Thus we conclude that f belongs to $C_b(X)$. Also it is clear from the equation (1) that $f_n \to f$ in $C_b(X)$. Therefore $C_b(X)$ is a Banach space.

- (b) Given $x, y \in X$, by an appeal to the triangle inequality in (X, d) we see that $|d(x, z) d(y, z)| \le d(x, y)$ for all $z \in X$ and thus $\|\rho_x \rho_y\| = Sup_{z \in X}|d(x, z) d(y, z)| \le d(x, y)$. With z = y, we observe that $d(x, y) \le \|\rho_x \rho_y\|$. Thus, $\|\rho_x \rho_y\| = d(x, y)$.
- (c) Given any metric space (X, d), by virtue of previous parts (a) and (b) of the problem we see that there is an isometric embedding of X in $C_b(X)$ given by $x \to \rho_x$. Let A denote the closure of $\{\rho_x : x \in X\}$ in $C_b(X)$. Then (A, d) is a complete metric space (being closed subspace of a complete metric space) of which X is a dense subspace.
- 2. Let X be a complex Banach space. Let $X_{\mathbb{R}}$ denote the same space, viewed as a real Banach space. Show that $f \to Re(f)$ is an isometry from X^* onto $X_{\mathbb{R}}^*$.

Solution: Given $f \in X^*$, we note that for any $x \in X$, $f(x) = |f(x)|e^{i\theta}$ where $\theta \in [0, 2\pi)$. Therefore, $|f(x)| = f(x)e^{-i\theta} = f(e^{-i\theta}x) = Ref(e^{-i\theta}x)$. So, $|f(x)| = Ref(e^{-i\theta}x) \le ||Ref|| ||x||$ so that $||f|| \le ||Ref||$. On the other hand it is obvious that $||Ref|| \le ||f||$ and the desired equality follows.

- 3. (a) Prove that every non-empty closed and convex subset of a Hilbert space has a unique element of smallest norm.
 - (b) Let C be the Banach space of all continuous function on [0, 1] into \mathbb{C} , with supremum norm. Let $M = \{f \in C : \int_0^{\frac{1}{2}} f(t)dt \int_{\frac{1}{2}}^1 f(t)dt = 1\}$. Show that M is a closed and convex non-empty subset of C containing no element of smallest norm.

Solution:

(a)

Suppose K is a non-empty, closed and convex subset of a Hilbert space. Let

$$\delta = \inf \{ \|x\| : x \in K \}.$$

Let $x, y \in K$. Then $\frac{1}{2}(x+y) \in K$ and it follows from the parallelogram law that

$$\|x - y\|^{2} = 2(\|x\|^{2} + \|y\|^{2}) - \|x + y\|^{2} \le 2(\|x\|^{2} + \|y\|^{2}) - 4\delta^{2}$$
(2)

Choose a sequence (z_n) in K such that $||z_n||$ converges to δ . Now an appeal to the equation (2) shows that

$$||z_n - z_m||^2 \le 2(||z_n||^2 + ||z_m||^2) - 4\delta^2 \to 0$$

as $m, n \to \infty$ so that (z_n) is a Cauchy sequence in K and as K is closed, (z_n) converges to some point of K, say, z. Then $||z|| = \lim ||z_n|| = \delta$. Hence the existence of an element of smallest norm in K is ensured.

If $z_1, z_2 \in K$ satisfy $||z_1|| = ||z_2|| = \delta$, then it follows from the equation (2) that $||z_1 - z_2||^2 \leq 0$ so that $z_1 = z_2$ and the uniqueness follows.

(b) It is clear that M is closed and equation on empty subset of C. Let $f \in M$. Then

$$1 = \left| \int_{0}^{\frac{1}{2}} f(t)dt - \int_{\frac{1}{2}}^{1} f(t)dt \right| \le \|f\|$$

Thus $\inf\{\|f\|: f \in M\} \ge 1$. For each $n \ge 2$, let f_n denote the continuous function on [0,1] whose graph is the union of line segments from (0,1) to $(\frac{1}{2},1)$, then from $(\frac{1}{2},1)$ to $(\frac{1}{2}+\frac{1}{n},\frac{1+n}{1-n})$ and finally from $(\frac{1}{2}+\frac{1}{n},\frac{1+n}{1-n})$ to $(1,\frac{1+n}{1-n})$. Then one can see that

$$\int_{0}^{\frac{1}{2}} f(t)dt - \int_{\frac{1}{2}}^{1} f(t)dt = \int_{0}^{\frac{1}{2}} f(t)dt - \int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{n}} f(t)dt - \int_{\frac{1}{2}+\frac{1}{n}}^{1} f(t)dt$$
$$= \frac{1}{2} - \frac{1}{n(1-n)} - \frac{(1+n)(n-2)}{2n(1-n)}$$
$$= 1$$

so that $f_n \in K$ for all $n \geq 2$ and one can easily see that $||f_n|| = \frac{n+1}{n-1}$ and so, inf $\{||f_n|| : n \geq 2\} = 1$. Consequently, inf $\{f : f \in M\} \leq 1$ whence inf $\{f : f \in M\} =$ 1. We assert that there is no element f in M such that ||f|| = 1. Suppose there is such an f. Then writing f = u + iv we see that

$$1 = \int_0^{\frac{1}{2}} u(t)dt - \int_{\frac{1}{2}}^{1} u(t)dt$$

which implies that

$$\int_{0}^{\frac{1}{2}} (u(t) - 1)dt + \int_{\frac{1}{2}}^{1} (-u(t) - 1)dt = 0.$$
(3)

Now note that ||f|| = 1 tells that $|u| \le 1$ and hence, both u - 1 and -u - 1 are non-positive integrands and it the immediately follows from the equation (3) that

u = 1 on $[0, \frac{1}{2})$ and u = -1 on $(\frac{1}{2}, 1]$ so that u is discontinuous at $\frac{1}{2}$, a contradiction. Hence our assertion is established.

- 4. Let $K : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be defined by K(x, y) = min(x, y).
 - (a) Prove that K is an n.n.d. kernel. Let H denote the Hilbert space with reproducing kernel K.
 - (b) Show that every element f of H is a continuous function with f(0) = 0.
 - (c) Let $0 = x_0 < x_1 < x_2 < \cdots < x_n$ and m_1, m_2, \cdots, m_n be real numbers. Let f be the unique continuous function on $[0, \infty)$ such that f(0) = 0, f(x) = constant for $x > x_n$, and $f|_{[x_i, x_i]}$ is a linear function of slope $m_i, 1 \le i \le n$. Show that $f \in H$ and compute its norm.

Solution:

- (a) Consider the function $\phi : [0, \infty) \to L^2([0, \infty))$ given by $\phi(x) = \mathbb{1}_{[0,x]}$ (characteristic function on [0, x]). Then it is obvious that $\langle \phi(x), \phi(y) \rangle = \int \mathbb{1}_{[0,x]} \mathbb{1}_{[0,y]} d\mu = K(x, y)$, showing that K is a positive definite kernel.
- (b) Let \mathcal{H} denote the Hilbert space with reproducing kernel K. Let \mathcal{H}_0 denote the subspace of \mathcal{H} spanned by the functions $\{K(., x) : x \in [0, \infty)\}$. It is known that \mathcal{H}_0 is dense in \mathcal{H} . Let $f \in \mathcal{H}$. Then there is a sequence (f_n) in \mathcal{H}_0 such that $f_n \to f$. Then f_n converges pointwise to f. So, $f_n(0) \to f(0)$. Evidently g(0) = 0 for any $g \in \mathcal{H}_0$ so that f(0) = 0.

We now show that f is continuous. We use the notation e_x to denote the evaluation functional for any x in $[0, \infty)$. Then e_x are continuous linear functionals on \mathcal{H} with $||e_x|| = K(x, x)^{\frac{1}{2}} = x^{\frac{1}{2}}$. First note that given any $x \in [0, \infty)$, K(., x)is the function which is identity function on [0, x] and on $[x, \infty)$, it is the constant function x and hence K(., x) is continuous. Thus every element of \mathcal{H}_0 is continuous (being linear combination of continuous functions). Given $\epsilon > 0$ and $x_0 \in [0, \infty)$. Since $f_n \to f$, there exists a positive integer N such that $||f_n - f|| < \frac{\epsilon}{3(x_0+1)^{\frac{1}{2}}}, \forall n \geq N$. Now continuity of f_N at x_0 suggests that there is a $\delta' > 0$ such that $|f_N(x) - f_N(x_0)| < \frac{\epsilon}{3}$ whenever $|x - x_0| < \delta'$. Let $\delta =$ $\min\{\delta', 1\}$. Thus whenever $|x - x_0| < \delta$, we have that

$$\begin{aligned} |f(x) - f(x_0)| &= |f(x) - f_N(x) + f_N(x) + f_N(x_0) - f_N(x_0) - f(x_0)| \\ &\leq |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| \\ &\leq ||e_x|| ||f_N - f|| + |f_N(x) - f_N(x_0)| + ||e_{x_0}|| ||f_N - f|| \\ &= x^{\frac{1}{2}} ||f_N - f|| + |f_N(x) - f_N(x_0)| + x_0^{\frac{1}{2}} ||f_N - f|| \\ &< (x_0 + \delta)^{\frac{1}{2}} \frac{\epsilon}{3(x_0 + 1)^{\frac{1}{2}}} + |f_N(x) - f_N(x_0)| + (x_0 + \delta)^{\frac{1}{2}} \frac{\epsilon}{3(x_0 + 1)^{\frac{1}{2}}} \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon, \end{aligned}$$

proving that f is continuous.

(c) A little thought shows that

$$f = (m_1 - m_2)K(., x_1) + (m_2 - m_3)K(., x_2) + \dots + (m_{n-1} - m_n)K(., x_{n-1}) + m_nK(., x_n)$$

so that $f \in \mathcal{H}_0 \subset \mathcal{H}$ and

$$||f||^{2} = \sum_{i,j=1}^{n-1} (m_{i} - m_{i+1})(m_{j} - m_{j+1})K(x_{j}, x_{i}) + m_{n}^{2}K(x_{n}, x_{n})$$

+ $m_{n}\sum_{i=1}^{n-1} (m_{i} - m_{i+1})K(x_{n}, x_{i}) + m_{n}\sum_{i=1}^{n-1} (m_{i} - m_{i+1})K(x_{i}, x_{n})$
= $\sum_{i,j=1}^{n-1} (m_{i} - m_{i+1})(m_{j} - m_{j+1})\min(x_{j}, x_{i}) + m_{n}^{2}x_{n} + 2m_{n}\sum_{i=1}^{n-1} (m_{i} - m_{i+1})x_{i}$
= $\sum_{i=1}^{n-1} x_{i}(m_{i}^{2} - m_{i+1}^{2}) + m_{n}^{2}x_{n}.$

5. Let $U : L^2(\mathbb{T}) \to L^2(\mathbb{T})$ (\mathbb{T} = unit circle with normalised arc-length measure) be defined by $(Uf)(z) = zf(z), z \in T, f \in L^2(\mathbb{T})$. Prove that U is a unitary and compute its spectrum.

Solution: Note that for any $f \in L^2(\mathbb{T})$, $||U(f)||^2 = \int_{\mathbb{T}} |z|^2 |f(z)|^2 dz = ||f||^2$, proving that U is unitary. Hence, $\sigma(U)$ (Spectrum of $U) \subseteq \mathbb{T}$. Let $\lambda \in \mathbb{T}$. We assert that $\lambda \in \sigma(U)$. Let c be any non-zero complex number and let 1_c denote the

constant function c on \mathbb{T} . Obviously $1_c \in L^2(\mathbb{T})$. If there exists $f \in L^2(\mathbb{T})$ such that $(U - \lambda I)(f) = 1_c$, then $(z - \lambda)f(z) = c$, for all z outside a set of measure zero, which in turn implies that $f(z) = \frac{c}{z-\lambda}$ for all z outside a set of measure zero. But such an f certainly is not a member of $L^2(\mathbb{T})$. Hence $U - \lambda I$ is not surjective for any $\lambda \in \mathbb{T}$ and consequently our assertion is established. Thus $\sigma(U) = \mathbb{T}$. \Box