
27-02-06 Solution
Functional Analysis - Mid-Sem Exam - Semester II

1. Let (X, d) be a metric space. Let Cb(X) denote the normed linear space consisting
of all (real or complex valued) bounded functions on X, with usual operations and
supremum norm.

(a) Show that Cb(X) is a Banach space.

(b) Fix a point x0 ∈ X. For any x ∈ X, let ρx : X → R be defined by ρx(y) =
d(x, y)− d(x0, y), y ∈ X. Show that x→ ρx is an isometric embedding of X in
Cb(X).

(c) show that every metric space occurs as a dense subspace of a complete metric
space.

Solution: �

(a) We show that Cb(X) is a Banach space. Let k denote the field R or C. Let (fn)
be a Cauchy sequence in Cb(X). Then note for each x ∈ X, |fn(x)− fm(x)| ≤
‖fn − fm‖ → 0 as m,n → ∞ so that (fn(x)) is a Cauchy sequence in k
for each x ∈ X and hence convergent in k. Let f : X → k be defined by
f(x) = limfn(x), x ∈ X. We need to show that f is in Cb(X). Given ε > 0,
there exists a positive integer N such that ‖fn − fm‖ < ε for all m,n ≥ N .
Thus, |fn(x) − fm(x)| < ε for all x in X and for all m,n ≥ N . Let m → ∞.
Then,

|fn(x)− f(x)| ≤ ε,∀x ∈ X, ∀n ≥ N. (1)

Thus for all x ∈ X,

|f(x)| =|f(x)− fN(x) + fN(x)|
≤ |f(x)− fN(x)|+ |fN(x)|
≤ ε+ ‖fN‖

showing that f is bounded on X. Thus we conclude that f belongs to Cb(X).
Also it is clear from the equation (1) that fn → f in Cb(X). Therefore Cb(X)
is a Banach space.
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(b) Given x, y ∈ X, by an appeal to the triangle inequality in (X, d) we see that
|d(x, z)−d(y, z)| ≤ d(x, y) for all z ∈ X and thus ‖ρx−ρy‖ = Supz∈X |d(x, z)−
d(y, z)| ≤ d(x, y). With z = y, we observe that d(x, y) ≤ ‖ρx − ρy‖. Thus,
‖ρx − ρy‖ = d(x, y).

(c) Given any metric space (X, d), by virtue of previous parts (a) and (b) of the
problem we see that there is an isometric embedding of X in Cb(X) given by
x → ρx. Let A denote the closure of {ρx : x ∈ X} in Cb(X). Then (A, d) is
a complete metric space (being closed subspace of a complete metric space) of
which X is a dense subspace.

2. LetX be a complex Banach space. Let XR denote the same space, viewed as a real
Banach space. Show that f → Re(f) is an isometry from X∗ onto X∗R.

Solution: Given f ∈ X∗, we note that for any x ∈ X, f(x) = |f(x)|eiθ where
θ ∈ [0, 2π). Therefore, |f(x)| = f(x)e−iθ = f(e−iθx) = Ref(e−iθx). So, |f(x)| =
Ref(e−iθx) ≤ ‖Ref‖‖x‖ so that‖f‖ ≤ ‖Ref‖. On the other hand it is obvious that
‖Ref‖ ≤ ‖f‖ and the desired equality follows. �

3. (a) Prove that every non-empty closed and convex subset of a Hilbert space has a
unique element of smallest norm.

(b) Let C be the Banach space of all continuous function on [0, 1] into C, with

supremum norm. Let M = {f ∈ C :
∫ 1

2

0
f(t)dt−

∫ 1
1
2
f(t)dt = 1}. Show that M

is a closed and convex non-empty subset of C containing no element of smallest
norm.

Solution:

(a)

Suppose K is a non-empty, closed and convex subset of a Hilbert space. Let

δ = inf {‖x‖ : x ∈ K}.

Let x, y ∈ K. Then 1
2
(x+ y) ∈ K and it follows from the parallelogram law that

‖x− y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2)− 4δ2 (2)

Choose a sequence (zn) in K such that ‖zn‖ converges to δ. Now an appeal to the
equation (2) shows that

‖zn − zm‖2 ≤ 2(‖zn‖2 + ‖zm‖2)− 4δ2 → 0
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as m,n → ∞ so that (zn) is a Cauchy sequence in K and as K is closed, (zn)
converges to some point of K, say, z. Then ‖z‖ = lim‖zn‖ = δ. Hence the existence
of an element of smallest norm in K is ensured.

If z1, z2 ∈ K satisfy ‖z1‖ = ‖z2‖ = δ, then it follows from the equation (2) that
‖z1 − z2‖2 ≤ 0 so that z1 = z2 and the uniqueness follows.

(b) It is clear that M is closed and eqconvex non-empty subset of C. Let f ∈M . Then

1 = |
∫ 1

2

0

f(t)dt−
∫ 1

1
2

f(t)dt| ≤ ‖f‖

.

Thus inf{‖f‖ : f ∈ M} ≥ 1. For each n ≥ 2, let fn denote the continuous function
on [0, 1] whose graph is the union of line segments from (0, 1) to (1

2
, 1), then from

(1
2
, 1) to (1

2
+ 1

n
, 1+n
1−n) and finally from (1

2
+ 1

n
, 1+n
1−n) to (1,

1 + n

1− n
). Then one can see

that ∫ 1
2

0

f(t)dt−
∫ 1

1
2

f(t)dt =

∫ 1
2

0

f(t)dt−
∫ 1

2
+ 1

n

1
2

f(t)dt−
∫ 1

1
2
+ 1

n

f(t)dt

=
1

2
− 1

n(1− n)
− (1 + n)(n− 2)

2n(1− n)

= 1

so that fn ∈ K for all n ≥ 2 and one can easily see that ‖fn‖ = n+1
n−1 and so,

inf{‖fn‖ : n ≥ 2} = 1. Consequently, inf{f : f ∈M} ≤ 1 whence inf{f : f ∈M} =
1. We assert that there is no element f in M such that ‖f‖ = 1. Suppose there is
such an f . Then writing f = u+ iv we see that

1 =

∫ 1
2

0

u(t)dt−
∫ 1

1
2

u(t)dt

which implies that ∫ 1
2

0

(u(t)− 1)dt+

∫ 1

1
2

(−u(t)− 1)dt = 0. (3)

Now note that ‖f‖ = 1 tells that |u| ≤ 1 and hence, both u − 1 and −u − 1 are
non-positive integrands and it the immediately follows from the equation (3) that
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u = 1 on [0, 1
2
) and u = −1 on (1

2
, 1] so that u is discontinuous at 1

2
, a contradiction.

Hence our assertion is established.

�

4. Let K : [0,∞)× [0,∞)→ R be defined by K(x, y) = min(x, y).

(a) Prove that K is an n.n.d. kernel. Let H denote the Hilbert space with repro-
ducing kernel K.

(b) Show that every element f of H is a continuous function with f(0) = 0.

(c) Let 0 = x0 < x1 < x2 < · · · < xn and m1,m2, · · · ,mn be real numbers. Let
f be the unique continuous function on [0,∞) such that f(0) = 0, f(x) =
constant for x > xn, and f |[xi1,xi] is a linear function of slope mi, 1 ≤ i ≤ n.
Show that f ∈ H and compute its norm.

Solution:

(a) Consider the function φ : [0,∞)→ L2([0,∞)) given by φ(x) = 1[0,x] (character-
istic function on [0, x]). Then it is obvious that 〈φ(x), φ(y)〉 =

∫
1[0,x]1[0,y]dµ =

K(x, y), showing that K is a positive definite kernel.

(b) Let H denote the Hilbert space with reproducing kernel K. Let H0 denote the
subspace of H spanned by the functions {K(., x) : x ∈ [0,∞)}. It is known
that H0 is dense in H. Let f ∈ H. Then there is a sequence (fn) in H0 such
that fn → f . Then fn converges pointwise to f . So, fn(0) → f(0). Evidently
g(0) = 0 for any g ∈ H0 so that f(0) = 0.

We now show that f is continuous. We use the notation ex to denote the eval-
uation functional for any x in [0,∞). Then ex are continuous linear functionals

on H with ‖ex‖ = K(x, x)
1
2 = x

1
2 . First note that given any x ∈ [0,∞), K(., x)

is the function which is identity function on [0, x] and on [x,∞), it is the con-
stant function x and hence K(., x) is continuous. Thus every element of H0

is continuous (being linear combination of continuous functions). Given ε > 0
and x0 ∈ [0,∞). Since fn → f , there exists a positive integer N such that
‖fn − f‖ < ε

3(x0+1)
1
2
,∀n ≥ N . Now continuity of fN at x0 suggests that there

is a δ′ > 0 such that |fN(x) − fN(x0)| < ε
3

whenever |x − x0| < δ′. Let δ =
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min{δ′, 1}. Thus whenever |x− x0| < δ, we have that

|f(x)− f(x0)| =|f(x)− fN(x) + fN(x) + fN(x0)− fN(x0)− f(x0)|
≤ |f(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f(x0)|
≤ ‖ex‖‖fN − f‖+ |fN(x)− fN(x0)|+ ‖ex0‖‖fN − f‖

= x
1
2‖fN − f‖+ |fN(x)− fN(x0)|+ x

1
2
0 ‖fN − f‖

< (x0 + δ)
1
2

ε

3(x0 + 1)
1
2

+ |fN(x)− fN(x0)|+ (x0 + δ)
1
2

ε

3(x0 + 1)
1
2

<
ε

3
+
ε

3
+
ε

3
= ε,

proving that f is continuous.

(c) A little thought shows that

f =(m1 −m2)K(., x1) + (m2 −m3)K(., x2) + · · ·+ (mn−1 −mn)K(., xn−1) +mnK(., xn)

so that f ∈ H0 ⊂ H and

‖f‖2 =
n−1∑
i,j=1

(mi −mi+1)(mj −mj+1)K(xj, xi) +m2
nK(xn, xn)

+mn

n−1∑
i=1

(mi −mi+1)K(xn, xi) +mn

n−1∑
i=1

(mi −mi+1)K(xi, xn)

=
n−1∑
i,j=1

(mi −mi+1)(mj −mj+1)min(xj, xi) +m2
nxn + 2mn

n−1∑
i=1

(mi −mi+1)xi

=
n−1∑
i=1

xi(m
2
i −m2

i+1) +m2
nxn.

�

5. Let U : L2(T) → L2(T) (T = unit circle with normalised arc-length measure) be
defined by (Uf)(z) = zf(z), z ∈ T, f ∈ L2(T). Prove that U is a unitary and
compute its spectrum.

Solution: Note that for any f ∈ L2(T), ‖U(f)‖2 =
∫
T |z|

2|f(z)|2dz = ‖f‖2,
proving that U is unitary. Hence, σ(U)(Spectrum of U)⊆ T. Let λ ∈ T. We
assert that λ ∈ σ(U). Let c be any non-zero complex number and let 1c denote the
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constant function c on T. Obviously 1c ∈ L2(T). If there exists f ∈ L2(T) such
that (U − λI)(f) = 1c, then (z− λ)f(z) = c, for all z outside a set of measure zero,
which in turn implies that f(z) = c

z−λ for all z outside a set of measure zero. But
such an f certainly is not a member of L2(T). Hence U − λI is not surjective for
any λ ∈ T and consequently our assertion is established. Thus σ(U) = T. �
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